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Abstract

Recent advances in modeling tools enable non-expert users to synthesize novel shapes by assembling parts ex-
tracted from model databases. A major challenge for these tools is to provide users with relevant parts, which
is especially difficult for large repositories with significant geometric variations. In this paper we analyze un-
organized collections of 3D models to facilitate explorative shape synthesis by providing high-level feedback of
possible synthesizable shapes. By jointly analyzing arrangements and shapes of parts across models, we hierar-
chically embed the models into low-dimensional spaces. The user can then use the parameterization to explore the
existing models by clicking in different areas or by selecting groups to zoom on specific shape clusters. More im-
portantly, any point in the embedded space can be lifted to an arrangement of parts to provide an abstracted view
of possible shape variations. The abstraction can further be realized by appropriately deforming parts from neigh-
boring models to produce synthesized geometry. Our experiments show that users can rapidly generate plausible
and diverse shapes using our system, which also performs favorably with respect to previous modeling tools.

1. Introduction

Modelers often lack a clear mental image when creating a
new shape and would ideally prefer to first browse through
different possible geometric realizations of the target object.
For example, one may want to flip through various exist-
ing designs before sketching a new chair. The ever growing
3D model repositories (e.g., Trimble 3D Warehouse) provide
rich samplings of such design possibilities, but are typically
unorganized and do not come with any parameterization of
the underlying shape spaces. The challenge then is how to
characterize, organize, and effectively navigate such shape
spaces implicitly specified by model collections. An even
more important challenge is how to provide previews of pos-
sible shapes that are missing from the input collections. In
this paper we propose how to effectively organize unorga-
nized model collections, and systematically detect and pop-
ulate the missing shape variations (see Figure 1).

There are a few common paradigms for exploring
model repositories: the user can provide a query 3D
shape [FMK∗03] or scribble a target shape in 2D [ERB∗12],
and then the system retrieves the matching shape(s). Such
approaches rely on the user having a clear conceptual model
of the target shape and being able to effectively communi-
cate the same. Further, the repositories should contain suf-
ficiently similar shapes that can be retrieved, an assump-

tion that is often violated. More recently, qualitative explo-
ration tools have been proposed [HSS∗13, KFLCO13] using
dynamic embedding. Although such systems provide intu-
itive local exploration of existing models, they do not sup-
port synthesis of the missing shapes. Talton et al. [TGY∗09]
propose an intuitive interface that tightly couples explo-
ration and synthesis for parameterized model families. How-
ever, their method assumes a compact parameterizable de-

parameterized embedding

Figure 1: We analyze unorganized model collections using
template-based abstractions to create a low-dimensional pa-
rameterized embedding of the underlying shape space. The
user then explores the parameterized space to create novel
models by probing the empty regions (e.g., in red rectangles).
In each case, a model was synthesized by significantly de-
forming and combining parts from the input models.
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Figure 2: We analyze unorganized model collections to obtain a template-based parameterized shape space. Exploration of the
abstracted shape space reveals possible shape variations, which can then be realized by appropriately mixing the input models.
The combined exploration and synthesis allows users to quickly get an overview of the modeling space and subsequently create
novel shape variations via the parameterized shape space.

sign space [WP95,ACP03], which quickly becomes infeasi-
ble for raw model collections with diverse shape variations.

In the context of synthesis, modeling from scratch re-
quires a lot of expertise and even professional training. A
simpler interface that is suitable for novice users is to di-
rectly combine parts from existing models to synthesize new
models [FKS∗04]. This type of direct manipulation-based
interface still faces the challenge of finding and extracting
appropriate parts from model repositories which is cum-
bersome with standard retrieval techniques. Hence, smarter
alternatives have been proposed, searching for parts based
on geometric [KJS07] and relational [ZCOM13] similar-
ity, or by sampling suitable probabilistic graphical mod-
els [CKGK11, KCKK12]. Such methods, however, do not
provide the user with a high-level preview of the space of
possible models that can be synthesized. Further, the user
needs a clear vision of the final shape in order to effectively
probe such systems to retrieve suitable models or model
parts. This is often difficult, especially in the presence of
significant model variations (see Figure 4).

We propose ShapeSynth, a novel approach that directly in-
tegrates exploration with synthesis. The key to our method
is extracting a template-based parameterizable space that ef-
fectively factors out and encodes (part-) deformation across
the collection. Our method has an offline analysis step and
an online hierarchical encoding stage to extract local embed-
dings of the underlying shape spaces. The embeddings facili-
tate both fast exploration of the existing shapes and preview-
ing of possible shapes that are missing from the input collec-
tions. The offline analysis reveals the structure of the shapes
in the collection using a set of deformable templates. The
automatically-learned templates are fitted to each shape pro-
ducing co-aligned and cosegmented models with known part
deformations. The fast online embedding reveals the differ-
ent shape groupings inside the collection, exposes the main
modes of variability for each group, and lends itself to fast
and intuitive synthesis of novel shapes. We performed a user
study to test our system on several large model collections
and compared with alternative systems (see also supplemen-
tary video and demo). Figure 1 shows some of the models

created by the different users of our system. In summary,
our contributions are:

• An efficient embedding technique for part-aware shape
descriptors that enables a hierarchical organization of
large model collections and provides a parameterized ba-
sis for exploring the underlying shape space;

• a novel exploration interface based on the embedding that
reveals groupings of shapes and summarizes the main
modes of variation inside each cluster; and

• a novel tool for synthesizing new shapes using 3D model
repositories, seamlessly tied to the exploration interface.

2. Related Work

In this work we demonstrate the synergy between two
problems that were traditionally studied independently: ex-
ploration of geometric collections and synthesis of novel
shapes.

Exploration of shape collections. A large body of research
has been devoted towards shape retrieval from collections
of 3D models. Typically, the user either provides an ex-
ample shape [FMK∗03, FKS∗04], a 2D sketch [ERB∗12,
LF08, SXY∗11], or 3D scene context [FH10, XCF∗13],
while the corresponding system finds an appropriate model
from the repository. Topological information [STP12] can
also be used for non-rigid shape retrieval. Ovsjanikov et
al. [OLGM11] observed that shape retrieval is only suitable
when the user has prior knowledge of a database, which is
itself a challenging task for unorganized datasets. Hence,
they proposed an alternative tool for exploring novel col-
lections. Several exploration interfaces have been proposed
since then, including navigating in the space of 3D models
by deforming a proxy shape [OLGM11], selecting regions
of interest to define an ordering of the models [KLM∗12],
and embedding shapes into a 2D space based on their geo-
metric differences [HSS∗13,KFLCO13,ROA∗13]. Although
these exploration techniques provide context for a potential
modeler (e.g., a better understanding of variations in part ar-
rangements and part geometry), none of these methods al-
low synthesizing novel shapes during the exploration ses-
sion, which is the key contribution of our work. In an in-
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teresting earlier attempt, Talton et al. [TGY∗09] proposed
the use of parametric design spaces to support exploratory
modeling based on human preferences. Although our work
is inspired by their interface, their system is only suitable
for parametric shape spaces (e.g., human bodies, procedu-
ral plants) and would not work with raw collections of 3D
models as its input.

Part-based model synthesis. The seminal modeling-by-
example system [FKS∗04] demonstrated that even inexpe-
rienced users can synthesize interesting shapes by mixing
parts from model repositories. Although several follow-up
methods have been proposed for stitching compatible parts
into a final 3D model (e.g., [SBSCO06, CKGK11]), two
key challenges remain: choosing appropriate parts and ef-
fectively presenting them to the user.

In the Shuffler system, appropriate parts were chosen from
a set of consistent segments [KJS07]. Subsequently, alter-
native methods measured part compatibility with respect
to the rest of the shape, including a probabilistic model
learned from training examples [CKGK11, KCKK12], a
fuzzy part correspondence based on similarity between
their bounding boxes [XHCOB12], part-based contextual in-
formation [XXM∗13], and functional arrangements which
encode structural relations such as symmetry and sup-
port [ZCOM13]. Most existing methods present compatible
parts as sorted lists [FKS∗04,CKGK11], which can be limit-
ing if the number of parts is large. Jain et al. [JTRS12] allow
choosing pairs of models and produce intermediate shapes
with similar part arrangements. However, choosing which
shapes to blend requires prior knowledge about the collec-
tion and is only appropriate for small datasets. Further, these
methods assume compatible parts, which is easily violated
in the case of large shape variations. Recently, Chaudhuri
et al. [CKGF13] proposed a browsing interface that uses
1D sliders associated with adjectives, allowing to search for
parts that have more or less of a certain property. Although
this results in a simple and effective interface, assigning nat-
ural language tags to geometry requires significant manual
effort and also does not provide sufficient geometric context.

3. System Overview

Our system takes as input a collection of semantically-
related man-made shapes, e.g., a set of 3D chair mod-
els, which were downloaded from the web. The user starts
by loading such a shape collection, which has been pre-
analyzed in an off-line stage (see Section 4).

The system interface, see Figure 3, is split into three pan-
els: the icon view that presents the different representatives
for quickly selecting among different style groupings; the
exploration view that presents a set of embedded points, one
for each shape among the current selection of models; and
the model view that presents the current synthesized model,

model viewexploration view

icon view

Figure 3: Our system comprises of an exploration view to
show the embedding of the input models; an icon view to
show representative models for the current group(s); and a
model view for displaying synthesized models created using
our coupled exploration and synthesis algorithm.

either abstracted as a set of box proxies, or as a part-based
geometric realization.

Input models get embedded such that models with simi-
lar deformations end up as neighbors, while dissimilar mod-
els are embedded to distant points (see Section 4). The em-
bedded points are automatically grouped to provide the user
with a high-level overview of representative shapes in the
icon view panel, with different colors indicating different
groups. As the user selects one of the groups, the corre-
sponding models are re-embedded and the process contin-
ues. Essentially, the user traverses the hierarchically orga-
nized models that are grouped based on their similarity, with
shape variations being automatically factored out. Further-
more, the user can explore variations within any single group
by studying the main variation modes across models in the
selected group.

More importantly, one can use our system to preview
plausible shapes that are missing in the original collections.
As the user hovers over any empty region in the exploration
view, at any level of the hierarchy, the system shows ab-
stracted views of synthesized shapes in the model view. This
allows users to progressively conceive and refine the miss-
ing shapes that they want to create. Note that the users can
work at any level of the hierarchy and freely combine mod-
els across clusters, if they desire. By providing the user an
idea of the shapes she wants to combine into new shapes, we
simplify the content creation process. Essentially we provide
a quick glimpse of possible models by exposing the space
spanned by the input collections. Constraints such as sym-
metry, contact, and size are directly preserved by our sys-
tem. Finally, the user can also view plausible geometric re-
alizations of the abstracted model. In the background, the
system produces such geometric realizations by combining
deformed parts from appropriate neighboring models (see
supplementary video and demo).
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Figure 4: Combining a random selection of chair mod-
els (top), even when they are consistently segmented, is chal-
lenging. The models have different proportions of parts,
that make a part selection based on visual inspection of
the superimposed models (bottom-left) confusing and can
easily result in meaningless part ensembles (bottom-right).
Instead, we expose a constrained and intuitive part-based
shape space for easy exploration and synthesis.

4. Algorithm

Starting from an unorganized model collection, our goal is
to allow the user to meaningfully navigate the input mod-
els, and more importantly, provide a preview of the possi-
ble shapes that can be synthesized by appropriately combin-
ing parts from the different input models. In order to enable
such exploration of missing shapes, we have to overcome
a few key challenges: (i) the input models typically have
large shape variations that in turn obscure any inherent con-
sistency across the collection; (ii) the models do not come
with any segmentation or consistent parameterization; and
(iii) the collections typically include thousands of models,
making realtime analysis non-trivial. For example, a visual
investigation of the models in Figure 4 does not immediately
reveal the space of possible models that can be realized by
part-level combination of the input models.

We overcome these challenges by computing intrinsic em-
beddings of the models, which in turn facilitate previewing
possible part-based synthesized models. The embeddings
help to identify which models can be combined; what re-
spective parts can be combined; and finally how the parts
can be deformed to produce a consistent model. Thus, the
user can directly explore the space of plausible models, with
the system factoring out the variations in configurations that
obscure novel synthesis possibilities. Intuitively, the embed-
dings offer parameterizations to systematically factor out
part deformations, making subsequent synthesis simple and
intuitive. We now describe the key steps of our method (see
Figure 2).

Initial analysis. First, in an offline phase [KLM∗13], we
analyze the input collection of models {M1, . . .MN}. Start-
ing with an initial template model, the method jointly op-

Figure 5: In the case of models with multiple compo-
nents (left), we use the extracted part distributions ob-
tained from the shape collection [KLM∗13] to obtain an
initial point labeling (middle-bottom) and part abstrac-
tion (middle-top). We refine the segments using a labeling
optimization (right).

timizes for part segmentation, point-to-point surface corre-
spondence, and a compact deformation model to best explain
the input. The deformation model assumes that each shape
can be approximated with a set of box-like parts that differ
in position and scale.

Abstracted encoding. Based on the extracted distribution
of the template parameters, we refine the segmentations of
the individual models Mi. We assume that each model comes
with multiple disconnected components, which is true for
most models in Trimble Warehouse [Tri13] that we used in
our experiments. If this assumption does not hold, we simply
assign each triangle to its nearest box. Let {p1, p2, . . .} be
the set of components for model Mi. Our task is to associate
each component with a template box. This is essentially a
labeling problem, where each pi can be assigned to a set of
t candidate boxes {l1, . . . , lt}. We formulate the labeling as a
MRF minimization:

{li}? := argmin
{li}

∑
i

E(pi→ l j)+∑
i, j

E(pi→ lk, p j→ ll) (1)

The unary term E(pi→ l j) := vol(Bpi∪l j )−vol(Bl j ), where
vol(Bpi∪l j ) denotes the bounding volume of component pi
and template box l j, and vol(Bl j ) denotes the bounding vol-
ume of template box l j, measures the increase of bounding
volume of the template box when component pi is assigned
to it. The pairwise term E(pi → lk, p j → ll) measures the
penalty when two neighboring components (based on short-
est distance between them) are assigned different labels (set
to 1e-5 in our tests). In the end, for each model we get a set
of abstracted boxes, each enclosing a part of the input model
(see Figure 5-right).

Let there be t different parts across all the extracted tem-
plates. We represent each model Mi as a configuration vec-
tor Xi ∈ R6t , where each (axis-aligned) template box is
represented by its centroid c and its dimensions s, i.e., its
length/breadth/height. Parameters corresponding to missing
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Data: Input model collection M := {M1, . . .MN}.
Result: Embedding coordinates of the selected models.
1. Analyze the input collection M in an offline
stage [KLM∗13];
2. For each model Mi ∈M, refine initial segmentation
to obtain configuration vector Xi ∈ R6t ;
3. Set selection M←M ;
4. while new selection M available do

i. Randomly pick n models M̃ j for j = 1, . . .n from
M as landmarks;
ii. Construct distance matrix Dn×n with elements
di, j := d(M̃i,M̃ j) for i, j = 1, . . .n ;
iii. Compute MDS embedding of the landmark
models M̃ j using D to obtain Ỹ j ∈ R2 ;
iv. For all Mi ∈M and Mi /∈ {M̃ j}, find its k nearest
neighbor models among the landmark models and
use distance-based interpolation to obtain
embedded coordinates {Yi}.
v. Compute (linear) basis vectors e1 and e2 for
inverse mapping of embedded coordinates to
configuration vectors.
vi. Apply mean-shift clustering on the points {Yi} ;
vii. Update selection M and repeat hierarchically by
returning to step #4 ;

end
Algorithm 1: Iteratively embed a selection of models M,
which is then used for exploration and synthesis.

parts are set to zero. We also detect the potential relations
among the individual parts, i.e., symmetry and contact re-
lations, and propagate the information to their associated
templates, which are later used in the constrained synthesis
phase. Note that the relations should be unified across tem-
plates within a given family. To address this in a consensus
stage, we collect the relations among all the templates and
use a greedy selection strategy to filter out falsely detected
relations. Improperly identified or conflicting relations can
be manually corrected, although advanced automated meth-
ods can potentially be used [MWZ∗13].

Efficient embedding. Both exploration and synthesis re-
quire a notion of neighborhood among the models. We use
the coarse abstraction obtained above to define such a dis-
similarity distance between model pairs Mi and M j as fol-
lows: d(Mi,M j) := ‖Xi−X j‖. Note that since we also have
the parameter distributions, one can instead use Mahalanobis
distance. Thus, similar models have near-zero dissimilarity
score, while dissimilar model pairs get high scores.

We use the similarity values to embed the models into a
low-dimensional parameterized space. One option is to con-
struct a N ×N matrix with all the pairwise similarity val-
ues (e.g., exp(−d(Mi,M j)

2/2σ
2)) between the input mod-

els and compute its spectral embedding [KLM∗12]. Such
a direct computation, however, can be prohibitively expen-
sive (i.e., O(N3)) for large model collections. Instead, we

propose a sampling-based approach to efficiently build an
embedding of the models (see Algorithm 1). The key ob-
servation is that the embedding is largely dictated by the
members from different (unknown) clusters (c.f., [dST04]).
Hence, working with a random sampling of models as rep-
resentatives yields an approximate embedding. Note that we
use the approximate embedding only when the number of
models is large, otherwise we perform the embedding with
all the selected models.

We start by picking at random n landmark models,
say {M̃ j}, from the current set of models M. Using the
n landmark models, we compute their pairwise distance
matrix Dn×n and embed the models to R2 using multi-
dimensional scaling (MDS) based on singular value de-
composition (SVD), to get {Ỹ j}. For any other model
Mi ∈ M, we compute its k nearest neighbors among the
landmark models. We then interpolate the embedded co-
ordinates of the landmark models to compute the embed-
ding of Mi, i.e., Yi ← ∑ j=1:k w jỸ j/∑ j=1:k w j, where w j :=
exp(−d(Mi,M̃ j)

2/2σ
2), with σ set to the diameter of set

{X̃i} and M̃ j denoting the j-th closest of the landmark mod-
els .

The above embedding method has a complexity of O(n2+
Nk logn). For example, for a chair dataset with 2036 models,
the sparse embedding takes about 0.6 sec, which is about 12
times faster than full embedding (see Figure 6).

Abstracting missing shapes. At this stage, we have
mapped the initial coordinates {Xi} → {Yi}. We solve for
the dominant linear variation modes e1 and e2 such that
Yi ≈ [(Xi · e1),(Xi · e2)] for all i ∈ [1,N] using a least squares
formulation. Now, given any point (α,β), we can lift up the

full embedding sparse embedding
(n=200)

distance

selected cluster radius

an input model
synthesized
abstraction

Figure 6: We embed the input models using their corre-
sponding fitted template-based abstractions. We perform an
efficient landmark-based embedding and analyze the points
to obtain a parameterized template abstracting the underly-
ing shape space. As the user navigates the embedded space,
the extracted variation modes are used to lift the points
(shown in red) to synthesize template abstractions. The dis-
tribution of the pairwise distances between the embedded
points is used to estimate a suitable clustering radius.
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embedding
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embedding
(level 3)

representative models
(level 1)

representative models
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Figure 7: A typical hierarchical exploration session using our interface. After the initial analysis, the system displays the
top level templates (top-left). As the user selects the green mode, its member models are embedded (level 1) and 4 dominant
clusters are detected. The user selects the next representative and its member models are re-embedded. When a single cluster is
discovered, its representative and dominant variation modes are shown (bottom-right).

point (from the empty region) to the configuration vector as
(α,β)→ αe1 + βe2, thus providing an abstracted model X
as a preview for the empty region.

Grouping models. We cluster the embedded points using
mean-shift clustering [CM02] in order to organize the data
into a hierarchy. We automatically select the clustering ra-
dius based on the histogram of the pairwise distances be-
tween the embedded points. Intuitively, in the case of points
that can be grouped into multiple clusters, we can estimate
a good clustering radius based on the first valley (if any) of
the histogram (see Figure 6). Each of the extracted clusters
is then re-embedded to extract corresponding basis vectors
(i.e., e1 and e2), eventually forming a hierarchical organiza-
tion (see Figure 7). As the user selects one of the clusters,
she zooms into that particular cluster in order to better study
the fine scale variations.

Constrained synthesis. A direct derivation of box config-
uration X = αe1 + βe2 from the embedding space can eas-
ily result in models that deviate from a semantically valid
one, e.g., symmetry being broken, part-to-part contacts be-
ing lost, etc. We project the box configuration parameters
to the valid shape space using a constrained optimization.
We observe that many relations of interest (c.f., [MWZ∗13])
simply amount to linear constraints involving parameters of
the configuration vector, e.g., contact, reflective symmetry
about known plane, equal dimensions of certain parts, etc.
Our goal is to obtain a new configuration X̃ such that poten-
tial symmetry and contact relations among parts are restored,
while X̃ being as close to X as possible (see Figure 8). This
amounts to solving the following minimization:

min
X̃
‖X̃−X‖2 such that f j(X̃) = 0 ∀ j = 1, . . .c (2)

where, fi(X̃) is a set of c semantic constraints derived from
the relations among the parts. We support three main types
of relations: symmetry, contact, and equal length.

Symmetry. Let two boxes, say (ci,si) and (c j,s j), have re-
flective symmetry with respect to a given plane. The corre-
sponding constraints take the form:

((ci + c j)/2−o) ·n = 0; (ci− c j)×n = 0; si− s j = 0

where n and o are the normal to the reflection plane and a
point on the plane, respectively.

X=

symmetry constraint

contact constraint

length constraint

synthesis without
constraints

synthesis with
constraints

Figure 8: Illustrative example of the different constraints
handled in our framework. (Left) In this 2D example, the
configuration vector X ∈ R12 represents the abstracted
model with 3 parts. For example, the two contact constraints
involve the orange-green and orange-blue boxes and hence
the corresponding fi(X) involves the corresponding coor-
dinates of X. (Right) Our system restores these constraints
during the real-time exploration using a QP formulation.
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Contact. When two boxes are in contact, they share a com-
mon contact point. Between two boxes in contact, we as-
sign the closest points as contact points. Alternatively, the
user can directly specify the contact points. Thus, between
two boxes, the contact constraint takes the form: ci + si/2 =
c j + s j/2 (up to sign changes due to which corners get se-
lected).

Equal length. In certain cases, we want a pair of boxes to
have similar dimensions (for example, the legs of a chair
should have equal height even if they are not symmetric).
Since the abstracted boxes are axis-aligned, such a constraint
takes the form: sy

i = sy
j when equality along y-direction is

desired.

The optimization in Equation 2 amounts to solving a
quadratic program with linear constraints. As the user ex-
plores the configuration space extracted from the input
collection, we perform the optimization to directly show
the constrained solution (see Figure 8 and supplementary
video). Note that the input templates, i.e. {Xi}, do not nec-
essarily satisfy the constraints. However, we do not project
them to the constrained space since the model parts are later
deformed to a constrained model, as described next.

Synthesizing models. As the user moves the mouse over a
point (α,β), our system shows the corresponding abstracted
box model, αe1 +βe2, which is then constrained to produce
abstracted model X̃ . Each such feature vector X̃ ∈ R6t rep-
resents concatenated parameters for t boxes X̃ = [x1, . . .xt ],
where xi is a 6-dimensional vector that encodes position
and dimensions of the i-th box. When the user is satis-
fied with the coarse arrangement of parts, she can click and
lock the system to the current box model. This immediately
prompts our system to fill the boxes with geometric parts
that have the most similar positions and dimensions (i.e.,
argminxpart ‖xpart−xi‖), which essentially picks parts that are
to be least deformed. The user can continue exploration and
visualize alternative part arrangements drawn over the se-
lection, or refine the choice of selected parts by clicking on
a corresponding box xi in the model view. The click prompts
the system to cycle through the candidate parts, where the
parts are taken from the k nearest models M j from the se-
lected model X (see Figure 9). One can use geometric simi-
larity to further sort the selected box xi.

5. Evaluation

In this section, we evaluate the proposed shape synthesis
tool. First, we describe the data and experimental setup, and
evaluate performance of our algorithm on diverse datasets
obtained from 3D Warehouse. While our coupled analysis,
exploration, and synthesis framework is the first of its kind,
we compare parts of our system to state-of-art shape syn-
thesis methods ( [CKGK11] and [JTRS12]) and evaluate our
constrained synthesis algorithm.

a b

c

d

e

tmodel a

model b

model c

model d

model e

deformed a

deformed b

deformed c

deformed d

deformed e

Figure 9: Our system allows to preview possible geomet-
ric realizations in an empty region around the embedded
points (top-right). Each of the retrieved models (models a-
e) is deformed to match the query configuration (indicated
as a red box). Parts from the deformed models (middle) are
then combined to create different plausible shapes (right).

Dataset. We tested our framework using Trimble Ware-
house models [Tri13] obtained from [KLM∗13]. We se-
lected a subset of models such that the template fitting en-
ergy is below 30, and hence our final analysis included
2062 chairs, 636 planes, and 114 bikes. As an additional
dataset, to compare with the authors’ implementation of syn-
thesis method [CKGK11], we use their manually-segmented
dataset of 100 airplanes from Digimation ModelBank.

Results. Several participants used our system to explore ex-
isting model collections and create new shape variations.
Overall the feedback was positive and they created a variety
of different models (see supplementary). Most people appre-
ciated the ability to quickly obtain a high-level overview of
the modeling space, refine the selection to a region via hi-
erarchical navigation, and finally obtain immediate preview
of geometric realizations. Some users complained that the
final models were at times disconnected making them look
unrealistic. This is expected as we only enforce contact con-
straints at the abstracted level of the boxes, and not on the
original geometry.

User experiments. We evaluated our system on 3 large and
diverse datasets from 3D Warehouse. We asked 8 volunteers
from a computer science department to use our system to
perform an open-ended task on each dataset:

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



Averkiou et al. / ShapeSynth: Coupled Exploration and Synthesis of Model Collections

T1: Create the most diverse set of 5 shapes.
Next, we validated the results by comparing to a random
selection of groups of 5 models from the existing datasets.
Similarly to previous work [CKGK11, CKGF13], we re-
cruited a different group of volunteers to compare random
pairs of results created by users of our method and models
belonging to the random selection. For each pair of results,
we described the task T1 and asked (i) if the resulting shapes
look plausible, and (ii) if the resulting shapes look diverse.
For each question, the evaluator had an option of selecting
one of the results, both, or none that satisfy the plausibility
or diversity condition.

User 1

User 6

User 3

Figure 10: Sets of models created in our user experiment
(please refer to supplementary for full results). Our system
enables rapid synthesis of diverse models.

In Figure 10, we present user-created models in each cat-
egory (all results are provided in the supplemental material).
Table 1 also shows results of the validation. Note that our
method is comparable to real models in terms of plausibil-
ity of shapes, and allows easy creation of diverse models in
comparison to random selection among the input models. As
the user clicks on the parameterized space, new shape varia-
tions are immediately shown (see supplementary demo).

Table 1: User study on Task T1 comparing our method with
a random selection from a dataset. Voting indicates num-
ber of times users voted for our method vs random selection
(where votes for both are summed with individual votes), and
timings are in minutes.

Voting Time
Plausibility Diversity (min)

Dataset Our Rnd None O R N O
bikes 77 64 2 69 58 11 5
chair 48 104 4 100 19 5 4

planes 53 81 2 68 48 6 3

Comparison to Chaudhuri et al. [2011]. We compare
against this system by focusing on high-level exploratory
design tasks. We used the authors’ implementation of the
method on their dataset of 100 consistently pre-segmented
airplanes. Our initial analysis was modified to create
deformable templates from segmented models and fit the
templates to all models without changing the segmentation.
We recruited a different group of 10 volunteers with CS
background and asked them to perform task T1, and:

T2: Create an airplane that is best suited to win a
dogfight (one-on-one aerial combat) in a computer game.
This is the same task as in [CKGF13].

Each user performed both tasks using both systems in a
consistent order (T1, T2), while we randomly permuted the
order in which systems were used. Figure 11 summarizes
the results produced by the same user (selected at random)
in both systems. We again validated the results using another
group of volunteers and summarize the statistics in Table 2.
Although users of our system often produced implausible
models when aiming at diversity in task T1, often the re-
sulting sets of models were deemed comparable in diversity.
Furthermore, we found that once the users became familiar
with the space of shapes, they could very rapidly synthesize
airplanes prescribed in task T2 that are comparable to re-
sults produced by Chaudhuri et al. [CKGK11]. We find the
variability result particularly surprising since our parameter-
ization is based on coarse box-abstractions rather than ge-
ometric details. Even then, our system exposes interesting
high-level part placement variations.

Our

Chaudhuri et al. 2011

Task 2

Task 2Task 1

Task 1

Figure 11: Example models created by User 1 (picked at
random) for comparison to Chaudhuri et al.[2011] system.
Note that both sets of models created for task T1 contain
diverse and plausible shapes, as was requested in the task.
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Table 2: Comparison to Chaudhuri et al. [CKGK11], tasks
T1 and T2 were accomplished with two different interfaces.
Voting columns indicate number of time users voted for re-
sults produced with our method vs their approach (where
individual votes are summed with votes for both methods).

Voting Time
Plausibility Accomplished (min)

Task Our Ch. None O C N O C
T1 67 174 17 81 131 38 6 14
T2 132 150 13 158 180 12 2 4

Comparison to Jain et al. [2012]. Our method can also be
used to interpolate between pairs of shapes, as in [JTRS12].
In Figure 12 we demonstrate two interpolations produced
by our method, and our simplified implementation of their
method. A visible advantage of our method is that it
produces more plausible shape variations for intermediate
shapes where the deformation is high (e.g., look at the chair
legs). The quality comes from: (i) appropriate part scal-
ing to facilitate model assembly; and (ii) neighboring mod-
els contributing to the intermediate models allowing richer
variations. Finally, unlike Jain et al. [JTRS12], our analy-
sis automatically segments the input models and establishes
part-level correspondence. In the future, it will be interest-
ing to use their contact and relation graphs to maintain the
model structure of the synthesized variations. It should also
be noted that as our approach is data-driven, performance
improves as the dataset grows. The example in Figure 12
is illustrated on a very small dataset and hence this is an
extreme case where our method can produce visible distor-
tions. In practise, we did not observe this effect when work-
ing with the full datasets.

Jain et al. 2012

Our

Source Target

Figure 12: We evaluate our method in a shape interpolation
scenario such as in [JTRS12]. Note that our method is more
robust to strong deformations because it uses other shapes
from the dataset to produce intermediate results.

Constrained synthesis. We evaluate the quality of our con-
strained synthesis via a leave-one-out experiment. First,
starting with model collection M, we compute its embed-
ding e1,e2 and then select a particular model Mi embed-
ded as (αi,βi). We then remove the model Mi and re-
analyze M\Mi to obtain embedding f1, f2 and re-synthesize
the model as α

if1 + β
if2. We then compare the effect of

leaving out Mi on the embedding . We found the variation
negligible in most cases. This is not surprising since our
landmark-based embedding, and hence the extracted dom-
inant modes are mainly dictated by the n randomly selected
models. If the landmarks remain unchanged, the embedding
does not change. Even with different landmarks the changes
are small as shown in Figure 6. Furthermore, we use the new
embedding to reconstruct the box structure for the model Mi
given its coordinates (αi,βi), and we found that the recon-
struction error is within 1% of the original box dimensions.

Restoring contacts. In a postprocessing step, it is possible
to restore contacts using a simple post-processing step as
shown in Figure 13. This step however is orthogonal to the
focus of this paper, and we leave it to future work to fully
evaluate its effect.

Figure 13: The synthesized models can be further refined
using docker-based part deformation. In these examples, the
parts of the chair and bike are brought back into contact
based on nearest part dockers.

6. Conclusions

We presented an analysis approach that extracts a template-
based hierarchical parameterization for input model collec-
tions. The extracted parameterization factors out part de-
formations to enable intuitive exploration of the models
and provides a high-level overview of the underlying shape
space. Subsequently, the analysis results are used for inter-
active creation of novel shape variations, both at an abstract
box-level and also with geometric details. We evaluated our
system using 4 datasets ranging from 100-2000 models with
18 users synthesizing 500+ novel shapes, validated by 30+
(different) people, with 164 pairwise comparisons.

In this work we focused on abstracting the input models
by axis-aligned box-templates. Given that, our system is not
suitable for datasets where the coarse structure of the shape
does not correlate with its functionality or desired proper-
ties. In the future, we would like to study the use of ori-
ented box-templates. Such an abstraction can be challeng-
ing to parameterize, but can potentially provide better un-
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derstanding of the underlying shape space, improved cluster-
ing and more meaningful exploration and synthesis of novel
shapes. Furthermore, we also plan to investigate supplement-
ing the shape space with part-based geometric descriptors.
The challenge is to appropriately combine the high-level box
descriptors with low-level geometric descriptors. Lastly, the
extracted parameterized space provides an abstracted repre-
sentation of the underlying shape space: we plan to investi-
gate other problems like pose estimation, scan completion,
etc., as projections to this parameterized space.
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